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 ABSTRACT 

The development and implementation of a semi-empirical 

method to estimate the unsteady forces and moments on 

an open marine propeller mounted behind a hull are 

discussed. The method relies upon a quasi-steady 

approach that allows the code to rapidly estimate the 

forces and moments for a wide variety of propellers.  

Unlike most other quasi-steady methods that use a point 

velocity or a velocity integrated over a line, this method 

uses a technique to weight the chord-wise velocity 

distribution to obtain an equivalent velocity for each 

radius; then to integrate those velocities across the span of 

the blade. An empirical correction was also developed 

that allows this method to be used with propellers in 

inclined flow. It is this weighted integral that allows this 

method to perform as well as it does. In general, it works 

better than the Tsakonas method (1974) of Stevens 

Institute. However, it is not better than the Kerwin and 

Lee (1978) method of MIT when an expert runs the MIT 

program. The required input is easy to prepare and 

requires three types of normally available data: basic 

propeller geometry; propeller open water curve 

tabulation; and, wake survey results.  The available 

unsteady experimental data is decomposed into a small 

subset used to develop the weighting, and the remainder 

used to validate the model.  This represents a valuable 

departure from other empirical approaches that require 

most of the data for development.  The results from this 

program, compared to experimental results and other 

prediction methods, are shown. 
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    NOMENCLATURE 

AR Aspect Ratio 

BR-Q Blade Rate Unsteady Torque 

BR-T Blade Rate Unsteady Thrust 

c Chord Length of Airfoil 

D Propeller Diameter 

EAR Propeller Expanded Area Ratio 

Exp Experimental Result 

J Propeller Advance Coefficient [V/(nD)] 

 

 

 

 

KQ Propeller Torque Coefficient [Q/(n
2
D

5
)] 

KT Propeller Thrust Coefficient  [T/(n
2
D

4
)] 

L Airfoil Lift 

MIT Massachusetts Institute of Technology 

n Propeller Revolutions per Second 

PPAPPF Unsteady Propeller Prediction Program from 

SIT 

 

PPDIREC Unsteady Propeller Prediction Program from 

SIT 

PUF Unsteady Propeller Prediction Program from 

MIT 

PUF2d Unsteady Propeller Prediction Program from 

MIT 

Q Propeller Torque 

QS Quasi-Steady Propeller Prediction 

Rn Reynolds Number 

SIT Stevens Institute of Technology 

T Propeller Thrust 

U Velocity of Flight for Figure 3 

V Velocity or Transverse Velocity for Figure 3 

Vr/V Radial Velocity Component of Propeller Wake 

Vt/V Tangential Velocity Component of Propeller 

Wake 

Vx/V Longitudinal Velocity Component of Propeller 

Wake 

Z Number of Blades on a Propeller 

n Phase Angle 

o Propeller Open Water Efficiency 

e Effective Reduced Frequency 

 PI = 3.14159 

 Angular Position 

 Fluid Density  

Subscripts 

des Design 

i Instantaneous 

us Unsteady 

Over-Strikes 

~ Unsteady 

 Average 

 

 

 1 INTRODUCTION 

In the last 40 years there has been an interest in 

alternating  propeller  shaft  forces,  which  are induced by  
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non-uniform flow into the propeller disc. This is 

principally due to the fact that as the newer ships have 

had larger installed powers and, at times, higher design 

speeds, the problem of propeller induced vibration in the 

ship's structure has become a major concern; a concern 

not only with the structural integrity but also with crew 

comfort and, for military ships, with the ability to run 

quietly. It soon became apparent that it was necessary to 

develop some method to reliably predict the unsteady 

forces and moments that are transmitted through the 

propeller shafting. Not only was it necessary to be able to 

predict these forces, it was essential to develop an 

approach to design propellers so as to minimize these 

forces. 

 

Several different techniques for predicting the unsteady 

forces on a propeller have been developed. These can be 

roughly grouped into four categories: (1) Quasi-steady 

methods; (2) two-dimensional unsteady methods; (3) a 

combination of quasi-steady and two-dimensional 

unsteady methods; and (4) three-dimensional unsteady 

methods. Good analyses and comparisons of these 

different methods are in publications by Boswell (1967), 

Jessup (1990), and Fuhs (2005).  

 

Comparing the experimental results and analytical 

predictions from these references and other results 

(published and unpublished), the analytical methods 

discussed by Boswell (1967) were either not sufficiently 

accurate, were cumbersome and expensive to use, or both. 

In this paper, an empirical procedure for predicting the 

unsteady forces on a propeller is developed that is simple 

enough to be easily understood, sufficiently fast to be an 

economical engineering tool, and produces predictions 

that compare favorably with experimental results. It is 

basically a quasi-steady procedure where the method of 

calculating the instantaneous velocities over the surface of 

the propeller blades has been empirically determined. 

 

This paper first presents a brief overview of the 

calculation technique, and then discusses the derivation of 

the empirical calculation procedure and the comparison 

with experimental results and other predictions; after 

which it provides a step-by-step description of the 

calculation method, and finally, it offers a brief discussion 

of the computer implementation of the procedure. 

 

 2  DEVELOPMENT OF AN UNSTEADY 

    CALCULATION PROCEDURE FOR MARINE 

    PROPELLERS 

2.1 Background 

In the past some researchers have broken the calculation 

of the fluctuating forces into two parts; one, the quasi-

steady part, and two, the truly unsteady part.  The 

procedure utilized in this paper is basically a quasi-steady 

technique for calculating the fluctuating forces on a 

marine propeller. A quasi-steady theory assumes that the 

instantaneous forces on an airfoil or propeller blade may 

be determined from the instantaneous values of inflow 

velocity to the foil. Included in this paper is a rationale for 

possibly accounting for some of the unsteady effects that 

are not accounted for by the usual quasi-steady methods. 

The unsteadiness results in a time dependent variation in 

the vorticity distribution in the downstream wake caused 

by the constantly varying velocity distributions on the 

foil. These effects prevent the full steady state lift 

predicted by the quasi-steady assumption from being 

produced. 

As applied to a marine propeller, the unsteady thrusts and 

torques are determined by examining the forces on only 

one blade of the propeller at a time where the blade forces 

are determined for a number of discrete positions 

throughout the propeller rotation. At each blade position a 

local inflow velocity to the blade is determined from the 

spatially non-uniform wake conditions in the vicinity of 

the blade. This velocity is then used to determine the 

instantaneous thrust and torque from the open water 

performance characteristics. A typical example of a 

spatially non-uniform wake and a set of open water 

performance curves are shown in Figures 1 and 2.  An 

implicit assumption made here is that the unsteadiness 

does not cause the mutual interference between adjacent 

propeller blades to change significantly from the steady 

state condition. The total force is calculated by summing 

the single blade forces over the number of blades, taking 

into account the proper phase angle between the blades. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Example of a Spatially Non-Uniform Wake on a 

Single Screw Ship 

 

In the previous paragraph it was not stated "how" the 

local velocity at the propeller blade was determined. 

Historically, quasi-steady methods such as McCarthy 

(1961) have determined the "effective inflow velocity" by 

arbitrarily using the velocity at a point, possibly the mid-

chord point at the 0.7 radius or from an integration of 

several points radially along the reference or skew line. 

This, at best, can only represent the velocity on a line of 

encounter. The major improvement in the present method 

is that the effective inflow velocity is determined from a 

weighted integration of the velocities over the entire blade 

surface. 



 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Example of an Open Water Curve – Propeller 

Number 4118 

 

It appears from existing data that the propeller blade 

forces are principally influenced by the flow conditions 

around the propeller leading edge area and that the effects 

of a changing inflow velocity on the blade forces diminish 

rapidly aft of this area; therefore, in calculating the 

unsteady forces, the inflow velocities around the leading 

edge will have to be weighted much more heavily than the 

velocities around the after part of a blade section.  

This observation is supported by von Karman (1938), 

who shows the lift on an airfoil entering a sharp-edged 

vertical gust (reproduced here as Figure 3). In this figure, 

it can be seen that the slope of the lift curve is essentially 

infinite when the leading edge of the foil enters the sharp 

edged gust. In other words, the most dramatic change in 

the lift occurs when there is a change in the flow 

conditions at the leading edge. 

 

 

 

 

 

 

 

 

 

Figure 3 – The Lift on an Airfoil During and Following its 

Entrance into a Sharp-Edged Gust 

 

How important is the unsteady portion of the fluctuating 

force solution and how does it vary for the typical range 

of marine propellers? For two-dimensional flows the 

unsteady part of the solution is very important, but as the 

flow becomes more "three-dimensional", the unsteady 

part of the solution becomes less important. In the 

limiting case, the unsteady part has no contribution at all.  

The flow around marine propellers lie somewhere 

between these two extremes, and it appears that, for 

engineering purposes, the unsteady part of the force 

solution may be considered not to vary significantly for 

the normal range of marine propellers. 

The dependence of the degree of two- or three-

dimensionality of the flow is illustrated in some results by 

Breslin (1970), based on Drischler (1956). Figure 4 shows 

the ratio of the unsteady lift to the quasi-steady lift 

response for rectangular foils in a sinusoidal gust of 

arbitrary amplitude.  It is obvious from this figure that for 

foils in 2-dimensional flow the unsteady part of the 

solution is very important, but as the flow becomes more 

3-dimensional the unsteady part of the solution becomes 

less and less important to the point, in the limiting case, 

where it has no contribution at all. If the quantities of 

reduced frequency, , and aspect ratio, AR in this figure, 

are converted to normal propeller parameters then an 

effective reduced frequency,  e, can be calculated for the 

propeller as: 

 

 e =  2.74 (EAR),                     (1) 

 

and the aspect ratio for the propeller blades will be: 

 

AR = 0.64 (Z)/(EAR)                   (2) 

 

where “EAR” is the propeller expanded, area ratio and 

"Z" is the number of blades. 

[Note:  e is a correction to that shown in Breslin (1970).] 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Ratio of Unsteady to Quasi-steady Lift Response 

of Rectangular Foils to Sinusoidal Gust of Unit Amplitude in 

Terms of Propeller Parameters 

 

When the normal range for propeller blade number, from 

2 to 7, and the normal range for propeller blade area ratio, 

from 0.4 to 1.2, are used in the above equations and 

plotted in Figure 4, the results are quite interesting. In this 

figure, it should be noted, that for any given blade 

number, the ratio of unsteady to quasi-steady lift for the 

propeller is almost totally independent of the blade area 

ratio (for blade rate frequency). Also, for all blade 

numbers there is only about a 20 percent maximum error 

introduced when a mean value between the 2- and 7-

bladed propellers is assumed (i.e., about that for a 4-

bladed propeller). While the case shown in Figure 4 is a 

  

 

 



very special case, the trends shown here should be general 

in application. Also, the magnitudes shown can probably 

be considered as a "worst" case since propeller blades are 

not rectangular but rounded, and that would make the 

flow more 3-dimensional. A conclusion that may be 

drawn from the above discussion is that a single modeling 

for the unsteadiness, independent of reduced frequency, 

may be made and included within the velocity weighting 

function without introducing significant errors in the 

"overall" unsteady problem. The unsteady effects in an 

unsteady force calculation technique act as an effective 

"flow memory" which tends to cause a phase lag and a 

reduction in the peak-to-peak amplitude of the force 

response compared to a quasi-steady analysis. If the 

unsteady effects can, in any way, be included in an 

empirical method such as this, it should be exhibited in 

the character of the fall-off of the velocity weighting 

function in the after part of a propeller blade section. 

 

2.2 Empirical Development 

The specific nature of the velocity weighting for this 

calculation procedure was derived from the results of 

unsteady force measurements on only the 3-bladed 

propeller series of Boswell (1967).  This reference 

contains one of the most complete parametric 

experimental programs investigating the unsteady forces 

on marine propellers. In this program, experiments were 

performed in both three- and four-cycle wake patterns 

(Figure 5), for three 3-bladed unskewed propellers of 

varying expanded area ratios and for one highly skewed 

3-bladed propeller (Figure 6). The empirical derivation of 

the weighting function utilized only the experimental 

results for these four propellers operating at design KT in 

the three cycle wake. Although it was felt, a priori, that 

the velocity weighting function would be similar in shape 

to the pressure distribution across a foil, a somewhat 

lengthy approach was taken that would both yield a 

satisfactory function and add to the understanding of how 

changes in the shape of the weighting function affect the 

unsteady force prediction. In this derivation, twelve 

different weighting functions were investigated.  

The first weighting function was simply an averaging of 

the velocities over a 10-degree arc of the propeller disc. 

This was done at several radii and then a mean velocity 

was determined by integrating over the propeller radius. 

The area from which the velocities were taken would 

appear, visually, to be a very narrow "pie-shaped" 

segment of the propeller disc. The results produced with 

this velocity weighting function are similar to the 

traditional quasi-steady methods. 

 

The first four of these functions tried were used to 

illustrate that the leading edge area was the critical region 

to be used in calculating the effective steady state velocity 

and that the contour of the leading edge of the propeller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Three-Cycle and Four-Cycle Wake Screens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Three-Bladed Propeller Series 

 

 

 



blades needed to be accurately represented. The fifth 

function, which evenly weighted the velocities over the 

entire blade, extended this proof and further illustrated the 

necessity of heavily weighting the leading edge area. 

Since the unsteadiness effects act as an effective "flow 

memory", it was thought that it might be necessary to 

include velocities downstream of the trailing edge of the 

blade. In the sixth through the ninth weighting functions, 

it was determined that not only was it not necessary to 

include these downstream velocities but even those 

velocities in the after part of the blade had to be 

progressively weighted less as the trailing edge was 

approached. The final nature of the falloff of the 

weighting function across the blade chord was determined 

in the tenth and eleventh weighting functions. Finally, in 

the twelfth weighting function a correction was added for 

propellers that have a mean projected blade width wider 

than the half cycle width of the wake (i.e., for a 3-cycle 

wake a half cycle is 60 degrees wide). Again, it should be 

stressed that this derivation was performed using only the 

design "KT" unsteady measurements from the three 

unskewed propellers shown in Figure 6 and making 

occasional use of the measurements for the highly skewed 

propeller. 

 

2.3 Comparison with Experimental Results 

The results of this calculation technique, showing good 

agreement with the experimental data, are compared with 

other calculation techniques in Figures 7 and 8 for the 3-

bladed unskewed propeller series of Boswell (1967). 
[Figures 7 and 8 are basically reproductions of Figures 27 

and 28 of this reference.] (While the measurements 

illustrated in these figures are those that the present 

method's velocity weighting function was derived with, 

the comparison is generally valid as will be shown later in 

this section.) From these figures, the marked difference in 

results between an old quasi-steady method and the 

present one can easily be seen. In fact, the comparison 

between the measurements and the present method is 

better than that for the Tsakonas unsteady lifting surface 

methods investigated. 

A final comparison with the Boswell measurements was 

made for the unsteady thrust and torque at multiples of 

blade rate frequencies. This was done as an additional 

check on the contention that the effects relative to the 

propeller blade aspect ratio and the reduced frequency 

tend to cancel. For a given propeller operating condition 

as higher multiples of blade rate forces are investigated, 

there are higher effective reduced frequencies that are 

associated with these forces. If there is not a cancellation 

of the effects of aspect ratio and reduced frequency, then 

the comparison of experimental data and predicted forces 

should progressively get worse as the multiples of blade 

rate frequencies get higher. The comparison of predictions 

and experimental data for the first through the fourth 

multiple of blade rate thrust and torque is presented in 

Table 1. Most of the predictions appear to be reasonable 

and the errors between experimental data and predictions 

are random instead of exhibiting any progressive 

behavior. While this does not prove that there is a 

cancellation of effects, it does support this contention. 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Correlation of Blade Frequency Thrust Over 

Range of Expanded Area Ratios at Design KT 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Correlation of Blade Frequency Torque Over 

Range of Expanded Area Ratios at Design KT 

 

 

Table 1a – Comparison of Experimental Results and 

Predictions for Multiples of Blade Rate Frequencies 
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EAR - - > 0.3 0.6 1.2 0.6 Skew

BR-T Exp Exp Exp Exp

1 0.358 0.445 0.218 0.051

2 0.036 0.030 0.030 0.011

3 0.038 0.026 0.062 0.004

4 0.022 0.020 0.003 0.022

BR-T QS QS QS QS

1 0.394 0.395 0.217 0.064

2 0.029 0.020 0.026 0.006

3 0.033 0.015 0.022 0.016

4 0.011 0.007 0.003 0.007

BR-T PUF2d PUF2d PUF2d PUF2d

1 0.325 0.482 0.217 0.139

2 0.025 0.041 0.019 0.004

3 0.022 0.015 0.006 0.007

4 0.004 0.004 0.001 0.002

Miller-Boswell Unsteady Thrust Ratios



Table 1b – Comparison of Experimental Results and 

Predictions for Multiples of Blade Rate Frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

After the calculation method was developed, predictions 

were made for comparisons with most of the experimental 

data existing at the NSWCCD and with the results from 

two different three-dimensional unsteady lifting surface 

computational methods, PPAPPF & PPEXACT from SIT 

and PUF2-d from MIT. The results for the unsteady thrust 

and torque for these cases are presented in Table 2.  From 

this table it can be seen that, on the average, the new 

procedure has smaller differences between experimental 

measurements and predictions than the Tsakonas three-

dimensional unsteady lifting surface calculation 

procedures investigated, but not as good as the Kerwin 

Method of MIT. There are, however, two sets of data 

where this new calculation method does not produce 

results that are better than the Tsakonas 3-dimensional 

unsteady method. One set is shown in Table 2 as the 

“blade number variation”; the measurements were made 

in a wind tunnel and there may be a problem with the 

accuracies of the measurements. The other set is shown in 

Table 2 as the “skew series in a 5-cycle wake”; no 

explanation has been found as to why the empirical 

predictions do not produce better data than the Tsakonas 

3-dimensional method for this set of water tunnel 

experiments, especially when it works well with the 5-

cycle sheared wake. These two sets of data are included 

here, however, for the purposes of completeness and to 

alert the reader to places where this calculation technique 

has some shortcomings. 

In addition to the above comparisons, a check was made 

to determine the ability of the new procedure to predict 

the unsteady forces in off design conditions. Predictions 

were performed for the 3-bladed Boswell series over a 

wide range of "J's" and compared with the experimental 

measurements (Figures 9 and 10). 

 

The experimental comparisons presented in Table 2 and 

Figures 9 and 10 clearly illustrate that this empirical 

prediction technique is generally applicable for the 

combinations of ship wake and propellers that are 

normally found in the marine field. 

 3 FURTHER DEVELOPMENT 

3.1 Propeller Side Forces and Bending Moments 
 

Until this point only the unsteady thrust and torque have 

been predicted.  We will now discuss the calculation of 

the shaft side forces and bending moments, and the blade 

bending moment at the blade root. To calculate these 

values, the following additional assumptions were made: 

 

1) The side forces could be calculated by dividing the 

torque by the radial center of the torque. (i.e., the 

centroid of torque) 

2) The bending moments could be calculated by 

multiplying the thrust by the radial center of thrust. 

3) The blade bending moment could be calculated by 

combining the moments due to the trust and torque 

taken about the blade root. 

4) The center of lift along a blade section is always at 

the 1/4 chord. (Boswell 1967) 

5) The mean radial center of thrust and torque can be 

determined from standard lifting line techniques 

(generally around 0.66 of the propeller diameter). 

6) The instantaneous centers of thrust and torque will 

vary inversely with the instantaneous centers of 

velocity. (i.e., the centroid of the velocity 

distribution). 

  

The first five of these assumptions are rather trivial but 

the sixth one may not, at first, be obvious. The 

instantaneous thrusts and torques throughout the propeller 

rotation are calculated and known before the side force 

and bending moment calculations begin. Therefore, at any 

blade angular position the blade lift is already fixed. For a 

given lift, as the center of velocity moves toward the tip, 

the outer sections of the propeller will be experiencing a 

lower angle of attack and will therefore be producing less 

lift. This in turn means that the inner sections of the blade 

will have to carry a larger portion of the total lift; 

therefore, the radial center of lift varies inversely with the 

radial center of velocity. Theoretical calculations may 

prove that a simple inverse proportioning of the velocity 

centers is not strictly correct but physical reasoning shows 

that the trend is correct and in an empirical approach such 

as this, this is a reasonable approximation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

EAR - - > 0.3 0.6 1.2 0.6 Skew

BR-Q Exp Exp Exp Exp

1 0.260 0.360 0.151 0.059

2 0.022 0.028 0.026 0.008

3 0.031 0.015 0.057 0.007

4 0.017 0.013 0.003 0.002

BR-Q QS QS QS QS

1 0.308 0.319 0.159 0.052

2 0.018 0.013 0.019 0.005

3 0.027 0.012 0.016 0.013

4 0.010 0.005 0.002 0.005

BR-Q PUF2d PUF2d PUF2d PUF2d

1 0.214 0.425 0.130 0.122

2 0.019 0.040 0.014 0.006

3 0.018 0.011 0.005 0.007

4 0.003 0.004 0.001 0.002

Miller-Boswell Unsteady Torque Ratios
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Table 2 - Comparison of Different Analytical Predictions with Experimental Results 

   Percent Errors in Unsteady Thrust and Torque for Training Data 

 

 

 

 

 

  Percent Errors in Unsteady Thrust and Torque for Blind Prediction Data 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Comparison of Experimental Blade-     Figure 10 - Comparison of Experimental Blade- 

Frequency Thrust and Empirical Prediction in    Frequency Thrust and Empirical Prediction in 

a 3-Cycle Wake          a 3-Cycle Wake 

Roddy PPAPPF PPDIREC PUF Roddy PPAPPF PPDIREC PUF

Boswell-Miller; Design J; EAR=0.3 10.1 10.2 24.2 -9.1 14.2 46.9 64.6 -17.5

Boswell-Miller; Design J; EAR=0.6 -11.6 5.9 8.4 -14.6 8.6 18.1 18.0

Boswell-Miller; Design J; EAR=1.2 -0.1 28.7 -0.5 2.8 10.6 64.3 -14.0

Boswell-Miller; Design J; EAR=0.6 (Skewed) 26.3 13.9 -18.3

Average Percent Error for Training Data 6.2 12.1 19.6 -0.4 -4.0 22.0 49.0 -4.5

Unsteady Thrust % Error Unsteady Torque % Error
Propeller & Conditions

Roddy PPAPPF PPEXACT PUF Roddy PPAPPF PPEXACT PUF

Model 5218; Prop 4013; Trim= 0 degrees 87.3 208.3 154.0 -56.7 -32.2 205.6 64.0 -96.3

Series 60; Wake Screen; Design J; Prop 4132 -3.6 30.6 4.0 1.0 96.1 19.0

Series 60; Wake Screen; Design J; Prop 4143 -18.0 106.3 19.2 -31.6 103.5 -8.3

Series 60; CB=0.60; Run #7; Z=4 35.9 82.2 27.5 102.6

Series 60; CB=0.60; Run #46; Z=4 36.6 83.8 28.9 104.4

Series 60; CB=0.60; Run #63; Z=4 44.0 94.9 28.8 105.4

Series 60; CB=0.60; Run #38A; Z=6 105.0 144.4 95.0 156.9

Blade Number Variation; Propeller 

Performance Estimated from B-Series; Z=3
-25.0 -9.9 -41.4

Blade Number Variation; Propeller 

Performance Estimated from B-Series; Z=5
-33.9 -27.6 -51.2

Blade Number Variation; Propeller 

Performance Estimated from B-Series; Z=7
53.6 33.9

Skew Variation; 5 Cycle Sheared Wake; Z=5;              

Skew = 0 degrees
24.8 -69.5 -0.4 1.1

-93.4 20.1

Skew Variation; 5 Cycle Sheared Wake; Z=5;              

Skew = 36 degrees
15.7 -76.6 2.1 -47.9

-95 11.8

Skew Variation; 5 Cycle Sheared Wake; Z=5;              

Skew = 72 degrees
-8.3 -73.6 -6.7 -29.2

-94.3 -2.4

Skew Variation; 5 Cycle Wake; Z=5;              

Skew = 0 degrees -37.1 -11.2 -2.6 -38.9 2.5 7.8

Skew Variation; 5 Cycle Wake; Z=5;              

Skew = 36 degrees -43.9 -13.6 1.3 -46.6 -6.6 5.0

Skew Variation; 5 Cycle Wake; Z=5;              

Skew = 72 degrees -71.3 -17.9 -8.9 -70.0 -21.4 -13.7

Skew Variation; 5 Cycle Wake; Z=5;                              

Skew = 108 degrees -47.6 30.3 -45.5 34.7

FF-1088 Model Blade Force Measurements 54.6 5.9 154.8 100.0

DD-963 Model Blade Force Measurements 29.2 72.6 -55.1 82.7

Average Percent Error for Predictions 10.4 30.3 6.3 8.0 -3.7 42.9 20.3 -6.8

Unsteady Thrust % Error Unsteady Torque % Error
Propeller & Conditions



 
3.2 Calculation Procedure 

 

The calculation method utilized here is divided into six 

major steps: 

1) The preparation of the necessary input--ship/propeller 

operating condition, propeller geometry, wake 

harmonic analysis coefficients, and propeller open 

water characteristics. 

2) The reconstruction of the longitudinal and tangential 

velocity component ratios from harmonic analysis 

coefficients throughout the propeller disc. 

3) The calculation of the effective instantaneous wake 

for each blade position. 

4) The calculation of the thrust and torque per blade at 

36 discrete angular positions throughout the propeller 

disc. 

5) The determination of the unsteady part of the thrust 

and torque. 

6) The performance of harmonic analysis on the 

unsteady forces. 

  

The specific information required for the first step is self-

explanatory. For the ship/propeller operating conditions 

the mean values for the ship speed (VS), Taylor wake 

fractions (l-wT) and (1-wQ ), and the propeller thrust (T), 

torque (Q), and RPM are needed. The value for the water 

density () is also required. If the side forces and the 

bending moments are to be calculated, then two more 

quantities are also needed: the mean radial centers of 

thrust and torque.  These values can be obtained from the 

results of propeller design lifting line calculations (or if 

there is no information available, past calculations 

indicate a good approximation is to assume 0.66).  The 

use of the radial centers of thrust and torque has been 

discussed earlier.    

 

In the second step of this procedure, the longitudinal and 

tangential velocity component ratios (Vx/V and Vt/V) are 

reconstructed from the harmonic analysis coefficients. 

These are in the form of:  
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This is done at each of the radial positions, from hub to 

tip, for which there is information on propeller geometry. 

At each of these radial positions, the velocity component 

ratios are determined circumferentially throughout the 

propeller disc making modifications, where necessary, 

such that the angular position for the wake survey will 

agree with the angular position for the propeller. [The 

sign convention for the necessary modifications is valid 

for propellers on the centerline and on the port side of the 

centerline of the ship.  For right hand propellers, the wake 

survey angular positions are complemented (i.e., 90 

degrees becomes 270 degrees etc.) For left hand 

propellers, the angular positions are not changed but the 

sign of the tangential velocity components is reversed.] 

These velocities are subsequently used in determining the 

"effective" local velocities at each propeller blade 

position.  The "effective wake" fractions for each blade 

position are determined in the third step.  

The instantaneous thrusts and torques are determined 

from the propeller open water performance characteristics 

using the local velocities calculated in the previous step 

as: 

Ti = KTin
2
D

4
/Z         Qi= KQin

2
D

5
/Z           (4,5) 

 where   

  KTi = f1(JT)  KQi = f2(JQ).              (6,7) 

The forces are then summed over the number of propeller 

blades and the mean forces are calculated (T,

_

 and Q,

_

 ).  

The mean forces are then compared with the values of 

thrust and torque specified in the first step (i.e., the steady 

state values, usually measured during model propulsion 

experiments).  If the two values of thrust (and torque) are 

not the same ( 0.5 percent), a correction to the effective 

wake values is made using standard convergence 

techniques and the forces are recalculated. This iteration 

proceeds until the two values being compared are within 

tolerance. Since the amplitude of the velocity change is 

known from the third step of this procedure and since the 

slope of the open water characteristics is not linear, the 

amplitude of the unsteady forces will be incorrect unless 

the calculated mean force is correct. 

In the fifth step, the unsteady part of the thrust (T) and 

torque (Q) is determined. The unsteady part of the force is 

simply calculated as the mean force minus the 

instantaneous force and is repeated for each of the 

propeller positions where the instantaneous force is 

determined          (i.e., T,
~

 = T,

_

 – Ti and Q,
~

 = Q,

_

 – Qi)      

(8,9) 

 

The propeller side forces and bending moments may be 

determined at this point in the calculation procedure if 

desired. These calculations are performed using the 

instantaneous values of thrust and torque determined in 

the fifth step.  

To assist in the interpretation of the results of the previous 

steps, a harmonic analysis is performed on each set of 

unsteady forces. From these analyses, the blade rate and 

multiples of blade rate forces may be determined along 

with their associated phase angles. To summarize, at this 

point, the total instantaneous forces on the propeller have 

been calculated, the unsteady part of these forces has been 

determined, and a harmonic analysis of the unsteady 

forces yielded the integer multiples of the blade rate 

forces and their associated phase angles. 

 

 3.3 Correction for Propellers in Inclined Flow 

The corrections made herein for propellers in inclined 

flow is an empirical correction made after observing the 

flow around a propeller operating in such conditions.  

Figure 11 shows an example of such flow conditions.  

From examining this figure it can be seen that the flow 

curls up very quickly aft of the propeller to resume its 

original flow direction. Since the flow downstream of a 
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propeller in an open water test is always parallel to the 

propeller shaft line, the only possible modification 

seemed, to this author, to modify the flow ahead of the 

propeller by adjusting the tangential velocities (VT/V) by 

an amount that appeared reasonable from the flow 

observations mentioned earlier.  Since the flow curled up 

so quickly, a correction factor to the tangential velocities 

between 1.5 and 2.0 appeared reasonable. After a 

parametric investigation using the data from a single-

screw and a twin-screw ship, both with inclined shafts 

supported by V-Struts, a correction factor of 1.8 was 

selected. Therefore, for propellers in inclined flow, the 

tangential velocities are multiplied by 1.8 and then used to 

determine the “effective wakes” for the propeller 

operation.  Presented in Figure 12 are the test results of 

the unsteady blade thrust for a single blade of the single 

screw ship along with the predicted results with the 

tangential velocity correction.   

 

4 USE OF CALCULATION PROCEDURE FOR 
PARAMETRIC INVESTIGATIONS 

One of the uses for an unsteady force calculation 

procedure is the parametric investigation of skew to 

minimize certain bearing forces or moments for a 

particular ship design. This calculation technique lends 

itself very well to such investigations. In this section, it 

will be shown how this can be done efficiently and the 

results of a sample set of calculations will be presented 

and compared with those from a three-dimensional 

unsteady lifting surface method. 

 The principal reasons for the efficiency in performing 

investigations of the effects of the skew are that the 

calculation procedure only needs to determine the 

velocity components throughout the propeller disc once 

and that only one set of propeller performance 

characteristics need to be determined. In this procedure, 

after the velocity components are determined, they are 

stored and can be recalled at any time. It is also known 

that for marine propellers designed for a given set of 

operating conditions and only having different skews and 

skew distributions, the propeller performance for all the 

propellers around the design region should be about the 

same. This is not to imply that the performance is the 

same throughout the operating range because it is not and, 

in fact, at the two extremes of the first quadrant operating 

range there may be large differences. 

Presented by Boswell and Cox (1974) is the design and 

evaluation of a highly skewed propeller for a cargo ship. 

In one phase of this design, “Calculations were performed 

using unsteady lifting surface theory…to minimize the 

pertinent components of the unsteady bearing forces.” As 

part of the continued effort to design a propeller for this 

ship, a series of skew magnitudes and distributions were 

investigated and the unsteady loads for each were 

predicted using the method of Tsakonas. For some of the 

same designs the unsteady loads were also predicted using 

the empirical method herein described and were 

compared to those produced by the Tsakonas unsteady 

lifting surface method. A typical set of comparisons is 

presented in Figures 13 and 14. These figures are 

constructed to illustrate the trends of the predictions 

instead of the magnitudes of the forces and, as can be 

seen, there is excellent agreement in the alternating 

thrusts, but the agreement is not as good for the vertical 

side forces. As mentioned previously, the comparisons 

were better for the thrusts and torques than the side forces 

and the bending moments, and these results tend to bear 

out the earlier conclusions. Unfortunately, there are no 

experimental results to verify either calculation 

procedure. 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Illustration of Propeller Operating in Inclined 

Flow 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 - Unsteady Thrust per Blade for a Single Screw 

Ship with a Propeller in Inclined Flow 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 -Comparison of Unsteady Thrust Predictions for a 

Cargo Ship Using Empirical Method and Unsteady Lifting 

Surface Method 
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Figure 14 -Comparison of Unsteady Vertical Side Force 

Predictions for a Cargo Ship Using Empirical Method and 

Unsteady Lifting Surface Method 

 
 
 5  A COMPUTER PROGRAM FOR THE             
     CALCULATION OF UNSTEADY LOADS FOR 
     MARINE PROPELLERS 

A computer program was developed, and is freely 

available from the author, for the calculation of the 

unsteady forces and moments produced by a marine 

propeller using the procedure developed earlier in this 

paper. Of paramount importance during the development 

of this program was the ability: 

1) To have input to this program in a format that is 

familiar to most naval architects; 

2) To have an easily understandable calculation method 

that could be modified with relative ease if 

calculation or output changes are desired; 

3) To have a flexible procedure to meet as many needs 

of the naval architect as possible; and 

4) To have a fast, economical program. 

The output of this program includes a summary of all the 

input, important intermediate calculations, a tabulation of 

the unsteady loads, and a harmonic analysis of each of the 

unsteady loads for the same number of harmonics that 

were input with the wake information. 

 

 6 DISCUSSION AND CONCLUSIONS 

In this paper, a procedure for the calculation of fluctuating 

loads on a marine propeller has been presented. The side 

forces and bending moments are not as accurate as those 

for the thrusts and torques; and by the very nature of this 

technique, field point pressures, forces and stresses at 

arbitrary points on a blade and other similar quantities 

cannot be determined by this method. It is because of just 

such restrictions that this empirical method is not meant 

to attempt to replace any of the theoretical lifting surface 

techniques. However this empirical technique is meant to 

be an economical engineering tool used where it is 

applicable. By comparison with experimental results the 

procedure is shown to be a good engineering tool with 

accuracies, on the average, surpassing the Tsakonas three-

dimensional unsteady lifting surface methods for 

alternating thrust and torque; however, this procedure is 

not as good as the Kerwin method when the Kerwin 

method is run by an expert using an iterative method.  

However, if the Kerwin method is run with a single pass 

only then the method discussed here again gives better 

results. Also, the reader may note that the 3-D methods 

discussed herein were all developed about 30 years ago 

but in Fuhs‟ (2005) conclusions it is noted that PUF-2, for 

most cases, gives adequate results. All of the necessary 

input to the procedure is easy to understand and is in a 

form that is familiar to most naval architects. The 

computational procedure is also easy to understand and 

economical to use with running times on a computer in 

the neighborhood of an order of magnitude less than the 

unsteady lifting surface techniques. 

There was a discussion, earlier in this paper, of the 

possibility of accounting for some of the unsteady effects 

in this fluctuating force calculation procedure. There has 

been no proof offered that the unsteady effects are 

accounted for, but it is important to note that since the 

comparison with the experimental results has shown 

satisfactory agreement over a wide range of propeller 

types and wake conditions, it may be concluded that 

either the unsteady effects have been accounted for or that 

they are sufficiently small as to be ignored. While this 

conclusion is probably valid, in the engineering sense, for 

the forces transmitted through the propeller shafting, 

some experimental evidence indicates that this is not true 

for the individual blade forces. 

Author‟s Note: This paper is a subset of, and was written 

concurrently with, a NSWCCD Hydromechanics 

Department report of the same name. Copies of this full 

report may be obtained by contacting the NSWCCD 

Technical Information Center. 
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